Negotiating the Relationship between Price and Volume: Implications for ICER Calculations in Heterogeneous Treatment Populations

Helen O'Donnell, MPharm, MSc^{1,2}, Laura McCullagh, BSc (Pharm), PhD^{1,2}, Michael Barry, MB, PhD^{1,2} and Cathal Walsh, PhD³. ¹National Centre for Pharmacoeconomics, Dublin 8, Ireland, ²Trinity College Dublin, Dublin 8, Ireland, ³University of Limerick, Limerick, Ireland

Purpose

- Restricting reimbursement to subgroups of the \bullet licensed population and engaging in price negotiations with producers are two methods payers are increasingly employing to optimise the use of new technologies
- However together these have implications for ICER calculations which the literature has not considered to date.
- For the purposes of this analysis we consider subgroups as representing stratified analysis of a licensed indication or analysis of populations for different treatment indications.

Methods-Simulation Study(Cont.)

- We assume a cost effectiveness threshold of €45,000/Quality Adjusted Life Year (QALY).
- An incremental cost-effectiveness analysis was conducted versus standard of care for both diseases at a cost of €13,000/patient/year
- Assuming DrugA is reimbursed for 'Yellow', another incremental analysis is conducted in a scenario at a cost of €11,000/patient/year if reimbursement is extended in both 'Yellow' and 'Blue'.
- traditional ICERs calculated under the are stratified approach and the novel approach. Weighted Average ICERS are presented for

		odel Para with Hea	ameters Ith State	Table 2. Other ModelParameters			
Parameter		Health State			Parameter	Value	
		Well	Sick	Dead		Yellow	Blue
-	l lation ibution	1000	0	0	DrugA Treatment Effect*	0.5	0.6
Health State Costs		€1000	€500	0	Standard of Care Cost	€0	€0
Utility Values		1	0.8	0	Initial Annual DrugA Cost/ Patient	€13,000	€13,000
Progression Transition Probabilities					Negotiated Annual DrugA Cost/Patient	€11,000	€11,000
Well	Yellow	Balance	0.100	0.050			
	Blue	Balance	0.090	0.045	Cycle Length		1 year
Sick	Yellow		Balance	0.100	Discount Rate		5%
					*Remaining Pro	portion of b	aseline

The purpose of this study is to describe a new method for incremental cost-effectiveness ratio (ICER) calculations in the presence of heterogeneity and price negotiations.

Methods-Novel Method

- In scenarios where an intervention is cost-effective in one subgroup (Subgroup₁) and fails to be cost effective in another (Subgroup₂), a decision may be made to restrict reimbursement to the Costeffective subgroup
- However if it is profit maximising to do so, producers may be willing to negotiate a lower price for reimbursement in the full population to generate increase sales.
- It has been previously shown that stratified analysis is more appropriate than a weighted approach if reimbursement can be average restricted to subgroups¹. Therefore traditional stratified ICER calculations would only consider the incremental costs and gains of the new intervention in the remaining subgroup.

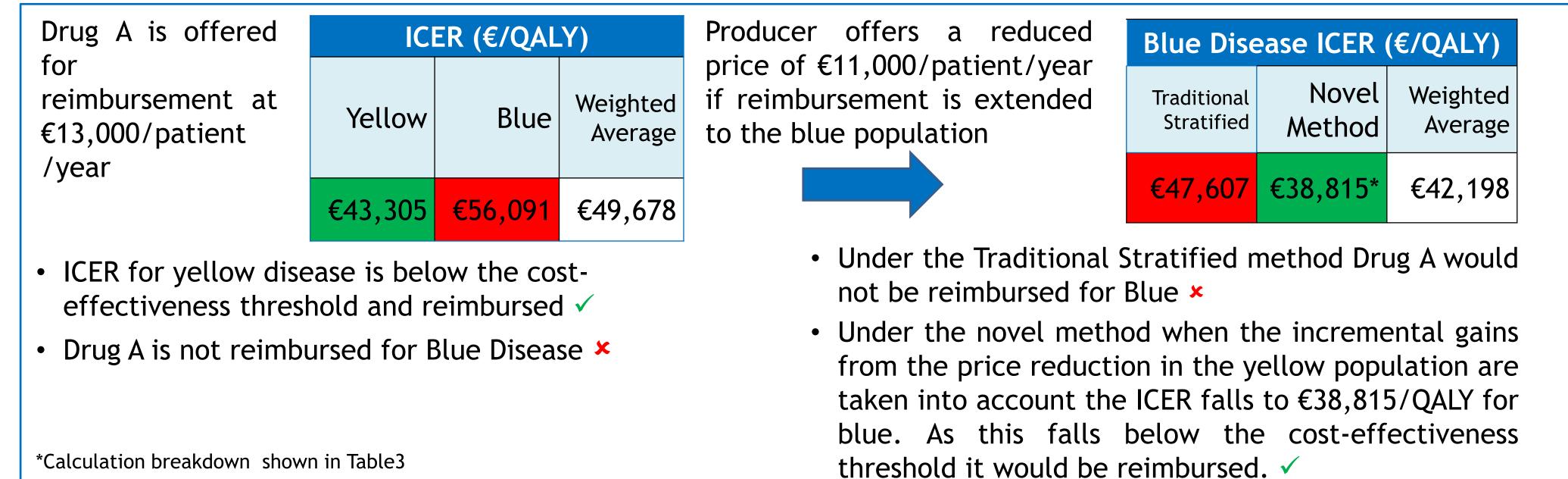
comparison purposes.

0.090 Balance Blue risk of progression after treatment with Drug A Dead Yellow Blue

Traditional Weighted Average **Novel Method** Stratified **Total Costs** Total Costs Total Costs Total Costs Subgroup₁ Subgroup₁ Subgroup₁ Subgroup₁ Intervention_{Orig} Intervention_{Neg} SoC Intervention_{Neg} Total QALYS Total QALYS Total QALYS Total QALYS Subgroup₁ Subgroup₁ Subgroup₁ Subgroup₁ Intervention Intervention Intervention Soc Total Costs **Total Costs Total Costs** Total Costs Total Costs Total Costs Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ Intervention_{Neg} Intervention_{Neg} Intervention_{Neg} SoC SoC Total QALYS Total QALYS Total QALYS Total QALYS Total QALYS Total QALYS Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ Subgroup₂ SoC Intervention Intervention SoC Intervention Comparator Intervention Comparator Comparator Intervention Intervention

Figure 1. Components included in the incremental cost-effectiveness analysis of Subgroup 2 under different methods after price negotiations. Assumption: Intervention is more cost effective in subgroup 1 than subgroup2 and is already reimbursed in Subgroup1 Intervention_{Neg}, Negotiatied Intervention Cost; Intervention_{Orig}, Original Intervention Cost; QALYS, Quality Adjusted Life Years; SoC, Standard of Care;

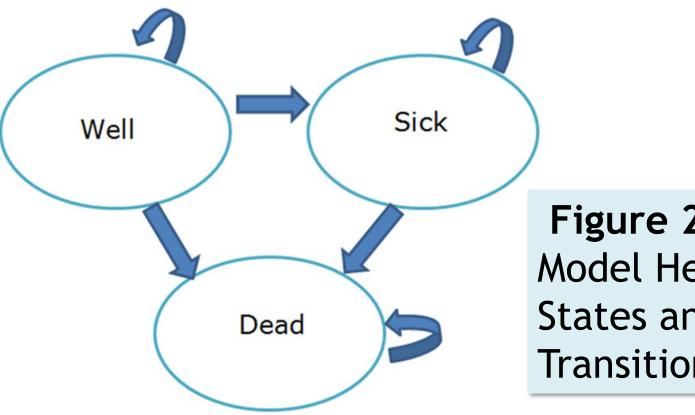
- We propose a broader incremental comparison where the additional cost-savings from the reimbursed subgroup Subgroup₁ (that would be generated by a price reduction) are included in the calculation of the ICER of the new intervention to reduce the incremental costs.
- Components included in the incremental analysis for the second subgroup under different methods are presented in Figure 1.


Methods - Simulation Study

- The implications of the new method are illustrated through the use of a simulation study.
- We propose that a new medicine "DrugA" is available to treat two diseases, 'Yellow' and 'Blue'.
- We assume a greater rate of disease progression and a larger treatment effect in 'Yellow' compared to 'Blue'.
- A hypothetical simple Markov Model was created compatible with these assumptions (Figure 2 and Table1 and 2)

Results

SoC


SoC

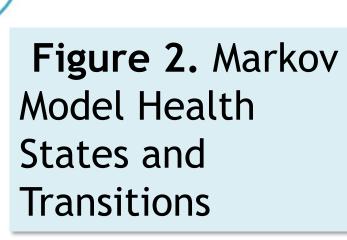


Figure 3. Simulation study negotiation assumptions and reimbursement outcome results under traditional stratified, novel and weighted average approaches

Table 3. ICER Calculations for Blue under Novel Method at Negotiated Price of €11,000

	Current		Negotiated		ncremental
Costs	TC Yellow Drug A @€13,000	€163,138,461	TC Yellow Drug A@€11,000	€139,540,169	-€23,598,292
	TC Blue SoC	€6,821,424	TC Blue Drug A@€11,000	€134,607,768	€127,786,344
	Total Costs	€169,959,885	Total Costs	€274,147,937	€104,188,052
QALY	TQ Yellow Drug A		TQ Yellow Drug A	10,979	0
S	TQ Blue SoC	7,890	TQ Blue Drug A	10,574	2684
	Total QALYs	18,869	Total QALYs	21,554	2684
ICER					€38,815

Author contact details: hodonnell@stjames.ie The authors report no conflicts of interest. SMDM 17th Biennial European Conference June 10-12, 2018 | Leiden, The Netherlands | **PS3-18**

¹Coyle D, Buxton MJ, O'Brien BJ. Stratified cost-effectiveness analysis: a framework for establishing efficient limited use criteria. Health Econ. 2003;12(5):421-427

Conclusions

Novel Method has the potential to change conclusions regarding the cost effectiveness of interventions This method should be employed when decision making is linked to price negotiations and when reimbursement can be restricted to subgroups

Impact of novel method may be considerable given the increasing prevalence of these scenarios